NEET Like MOCK TEST-02

Time: 3.00Hrs 200 MCQs PATTERN Max.Marks.720

INSTRUCTIONS

- 1. This test will be a 3 hours Test, Maximum Marks 720M.
- 2. This test consists of Physics, Chemistry, Botany and Zoology questions with equal weightage of 180 marks.
- 3. Each question is of 4 marks.
- 4. There are four parts in the question paper, consisting Part-I Physics (Q.no.1 to 50), Part-II Chemistry (Q.no.51 to 100), Part-III Botany (Q. no. 101 to 150) and Part-IV Zoology (Q. no.151 to 200). Each part is divided into two Sections, Section A consists of 35 multiple choice questions & Section-B consists of 15 Multiple choice questions, out of these 15 questions candidates can choose to attempt any 10 questions.
- 5. There will be only one correct choice in the given four choices for each question. For each question 4 marks will be awarded for correct choice, 1 mark will be deducted for incorrect choice and zero mark will be awarded for unattempted question.
- 6. Any textual, printed or written material, mobile phones, calculator etc. is not allowed for the students appearing for the test.
- 7. All calculations / written work should be done in the rough sheet provided.

Syllabus

Physics : CLASS XI & XII

Chemistry: CLASS XI & XII

Biology : CLASS XI & XII

PART-1: PHYSICS: SECTION-A Two towers A and B each of height 20 m are separated by a distance 200m. A body thrown

horizontally from the tower A with a velocity 20m/s towards the tower B hits the ground at a point P.

1.

		•		A with same velocity hits the ground at
	Q. The uniform v	elocity with which a tr	ruck can move from P to	o Q in 4 seconds is $(g = 10m/s^2)$
	(1)5m/s	(2)20m/s	(3) $15 m/s$	(4) $30 m/s$
2.	_	of emf given by $(3\sin \omega)$	$t + 4\cos\omega t$) V is	
	$(1)\frac{5}{\sqrt{2}}V$	$(2)5\sqrt{2}V$	(3) 5 V	(4) 7 V
3.	A convex mirro pole produce s		. A real object is placed	d at a distance ' f ' in front of it from the
	1) infinity	2) f'	3) f/2	4) 2f
4.				ctance 108 mH. The self inductance of a
		radius and 500 turns is		
	(1) 108 mH	(2) 75 mH	(3) 90 mH	(4) 190 mH
5.	A)When a ball	is dropped on to the gro	ound from certain heigh	nt, it comes to rest after few bounces,
	loosing all of its	s energy. It is an examp	ole of the violation of c	onservation of energy.
	B) In uniform c	ircular motion, the acc	eleration of the body is	constant.
	(1) A alone is to	rue (2) B alo	ong is true	
	(3) Both A and	` '	A and B are false	
6.	The current thro	ough the cell in the foll	owing network is (Dio	odes are ideal)
			$D_1 \qquad 5\Omega$. 5.0
				11000
			$20 \times 10^{10} $	(a) Korr
			3"	
			<u></u>	No.
			26'V 2Ω	SUN .
_	(1) 1 A	(2) 2 A	(3) 6 A	(4) 4 A
7.				oints during its flight in the uniform
	_			pendicular to each other, then the
		projectile at the highest	-	(4)1.0
0	(1) 0.6 m/s	(2) 0.4 m/s	(3)2.4 m/s	(4)1.8 m/s
8.			ecomes half in one min	ute. The amplitude after 3 minutes will
	be $\frac{1}{1}$ times the	original. Then is x	celle	
	\mathcal{X}		V	40. 6
	(1) 8	(2) 4	(3) 12	(4) 6
9.	An electron mo	ving with a velocity V_1	$=\hat{i} m/s$ at a point in a	magnetic field experiences a force
	$\overline{F} = (-e \hat{i}) \text{ New}$	yton where 'e' is the ch	arge of the electron. If	the electron moves with a velocity
	,			and diddical moves with a velocity
	$\overline{V}_2 = 2k m/s$ at	the same point, the force	ce experienced by it is	
	(1) + e k Newto	on $(2) - e k Newton$	n (3) Zero	(4) e i Newton
10.				s $(-a,0)$ and $(a,0)$ respectively at rest.
				wards the particle Q. If all the collisions
	-	•	number of collisions in	<u> </u>
	(1) 5	(2) 4	(3) 3	(4) 2
11.	` '	\ /	()	ecific resistance of the material of the
11.	-	•	-	
				amp. If the cross – sectional area of the
		the potential gradient of		(4) 10-877
	$(1)10^{-4}V/m$	(2) $10^{-2}V/m$	(3) $10^{-6}V/m$	(4) $10^{-8}V/m$

13.	<u> </u>	-		of the body at the poles, if the
	value of acceleration de	ue to gravity at the e	quator is $\frac{1}{3}$ of the valu	e at the poles, is (Average radius of
	the earth is R)			
	(1)v	$(2) \sqrt{2} \upsilon$	$(3) \sqrt{3}v$	$(4) \frac{v}{\sqrt{3}}$
14.	The emf and internal re	esistance of a single	battery that can replace	e the combination below is
	Γ		10 V 2Ω	
		10 V	$\frac{10^{1}V}{4^{1}V}$ $\frac{2\Omega}{2\Omega}$	
	(1) $13V, 2\Omega$	(2) $4V, 2\Omega$	$(3) 10V, 2\Omega$	(4) $19V, 2\Omega$
15.	of each molecule is m.	If K is the Boltzmar	in constant, then the de	absolute temperature T. The mass ensity of the gas is
	$(1) \ d = \frac{Pm}{KT} $	$(2) d = \frac{PT}{Km}$	$(3) d = \frac{m}{PKT}$	$(4) d = \frac{Km}{PT}$
16.	Sensitivity of potention	neter can be increase	ed by	
	a) increasing series resib) decreasing the length			
	c) using potentiometer	a wire of high tempe	erature coefficient of re	esistance
	d) increasing the length	of the wire	21/ 255	
	1) a and c are correct	2) b a	nd d are correct	
17.	3) b and c are correct		nd d are correct	g to the relation $P = \alpha V$. The molar
1/.	specific heat of the pro-	=	. O. 7 =	g to the relation $T = \alpha V$. The motar
				$R(\nu)$
	$(1) \ \frac{R}{2} \left(\frac{\gamma + 1}{\gamma - 1} \right)$	$(2) \left(\frac{\gamma - 1}{\gamma - 1} \right) R$	(3) $R\left(\frac{\gamma}{\gamma+1}\right)$	$(4) \frac{3}{2} \left(\frac{7}{\gamma + 1} \right)$
18.		_		the ratio 2 : 3. The elastic potential
	energy per unit volume			
	$(1)\frac{2}{3}$	$(2)\frac{7}{9}$	$(3) \frac{81}{16}$	$(4)\frac{10}{81}$
19.	The truth table for the f			01
	A	$\overline{}$		
	7) >	— > ⊶ Y	
	B			
20	` ,	(2) NAND gate	(3) OR gate	(4) AND gate
20.	•		_	is at a height 10m from the ground y and rises back to the height of
	10m. Then the height f	_		_
	(1) 20 m	(2) 25 m	(3) 40 m	(4) 60 m

If $F = \frac{v}{c \ln(xb)}$, then (F, v and x denote force, velocity and distance respectively.)

12.

(1) the dimension of c are [MT]

(4) the dimension of b are $[L^{-1}]$

(2) the dimension of x must be same as $\frac{v}{cb}$

(3) the dimension of $\frac{v}{c}$ can never be same as F

	$K \times 10^{-6}$ /° C, then	the value of 'K' is		
	(1) 60	(2) 32	(3) 40	(4) 52
37.	* /	· ,	\	face is given by $V = 4x^2$ volt. Calculate
0,,		the point $(1m, 0m, 2n)$		are in ground of the same and and
		• `	$3) -8x\hat{k}$	$4) -2x(\hat{i}+\hat{j}+\hat{k})$
	$1) -8x\hat{i}$	$2) -8x\hat{j}$	3) -8xk	4) $-2x(l+j+k)$
38.	A Carnot engine of	f efficiency 40 %, take	es heat from a source	e maintained at a temperature of 500 K.
				source temperature, for the same sink
	temperature, must	_		1 /
	(1) 750 K	(2) 630 K	(3) 420 V	(4) 500 K
	(-)	C 5		C = 4
39.	Two moles of an id	deal gas with $\frac{C_p}{C} = \frac{3}{2}$	are mixed with 3 mo	les of another ideal gas with $\frac{C_P}{C_V} = \frac{4}{3}$.
		C_{v} 3		C_{ν} 3
	The values of $\frac{C_p}{C_{rr}}$	for the mixture is	(60)	"IN"
	C_{ν}	ior the inixture is		alle.
	(1) 2.5	(2) 1.42	(3) 4.6	(4) 3.2
40.	` '			asses M_1 and M_2 , respectively. The
то.				
	gravitational field	due to sphere 1 and 2	are shown. The valu	$e ext{ of } M_1 / M_2 ext{ is}$
	32.	ш		
	S.a.	₽ 1		
		ظ 4 1		
		E .		
		.월 3 🕂	^ ~	
		.≅ o 1 /		
		ravitational field	\mathcal{D}	
		○ 1 + // ~		
		/ .		-
		0 1	2 3 4	5
			Di	stance x
	2	1	1	2
	$(1)\frac{3}{4}$	$(2)^{\frac{1}{2}}$	$(3)^{\frac{1}{2}}$	$(4) \frac{2}{3}$
	т	6	2	3
41.	1 0	1	1	ween them. The force between them is
	F_1 , if half of the sp	pace between the char	ges is filled with a m	nedium of dielectric constant 4 and the
	C 1	1	11 .	
	force between then	n is F_2 , if $\frac{1}{3}$ rd of the	space between the cl	harges is filled with dielectric of
	dielectric constant	2		
	dicicettic constant	7. Then T ₁ / T ₂ is		

A flood light is covered with a filter that transmits red light. The electric field of the emerging beam

 $(3)3.44W/m^2$

In a parallel plate capacitor the separation between plates is 3x. This separation is filled by two layers of dielectrics, in which one layer has thickness x and dielectric constant 3k, the other layer is of thickness 2x and dielectric constant 5k. If the plates of the capacitor are connected to a battery, then

A non-isotropic solid metal cube has coefficients of linear expansion as 5×10^{-5} /° C along the X -

axis and 5×10^{-6} /° C along the Y and the Z - axes. If coefficient of areal expansion of the solid is

 $(4)6.88W/m^2$

 $(4)\frac{3}{4}$

is represented by a sinusoidal plane wave $E_x = 36\sin(1.20 \times 10^7 z - 3.6 \times 10^{15} t)V/m$. The average

34.

35.

36.

intensity of the beam will be

 $(2)1.72W/m^2$

the ratio of potential difference across the dielectric layers is

 $(1) 0.86 W / m^2$

	1) $\frac{100}{81}$	2) $\frac{50}{30}$	3) $\frac{81}{100}$	4) $\frac{30}{50}$	
42.	Statement A:	When a proton and a ne	eutron enter into a trai	nsverse magnetic field	with equal speeds,
	then they trace	e circular paths of equal	radii.		
	Statement B:	In a transverse magneti	c field the period of re	evolution of a charged	particle in a
	circular nath is	s directly proportional to	o the mass of the nart	icle	

(3) A is correct and B is not correct (4) A is not correct and B is correct 43. A tank having cross sectional area 64 A is filled with water to a height 4 h. If a small hole of cross sectional area A is made at the bottom of the tank, then the time taken by the water level to decrease from 16 h to 4 h is

 $(1)120\sqrt{\frac{h}{g}}$

(2)115 $\sqrt{\frac{3h}{g}}$ (3)120 $\sqrt{\frac{h}{2g}}$ (4)128 $\sqrt{\frac{2h}{g}}$

(2) Both A and B are not correct

Two conductors of capacity 8.4 mF each charged to potential 500V and -500V are joined by 44. a conducting wire. If the mass of the wire 500 g and specific heat of the material is 0.1 cal/g/°C, the raise in the temperature of the wire is

(1) $2.5^{\circ}C$

(2) $5^{\circ}C$

 $(3)10^{\circ}C$

 $(4) 20^{\circ} C$

45. The earth's magnetic field is due to electrical currents produced by convective motion of metallic fluids (molten iron and nickel) in the outer core of the earth. This effect is known as

(1) Tyndall's effect

(1) Both A and B are correct

(2) Dynamo effect

(3) Meissner effect (4) Peltier effect

Two identical wires are stretched by same tension of 100 N and each wire emits note of 46. frequency 400 Hz. If the tension of any wire is increased by 2 N then beat frequency heard is

(1) 1 Hz

(2) 2 Hz

(3) 3 Hz

(4) 4 Hz

The equation of a stationary wave in a string is given by $y = 2A \sin kx \cdot \cos \omega t$. Maximum 47. transverse speed of the particle is

1) $\frac{\omega}{k}$

 $2) \frac{2A}{\omega}$

There exists uniform electric field \vec{E} as shown in the space. Four points A, B, C and D are also 48. shown which are equidistant from origin. If V_A, V_B, VC and VD are their respective potentials then

(1) $V_A > V_B > V_C > V_D$

(2) $V_A = V_B > V_C = V_D$

(3) $V_C = V_D > V_A = V_B$

(4) $V_A > V_B > V_C = V_D$

49. In the circuit shown, the equivalent capacitance between A and B is

3) $\frac{C}{2}$

50. In the electrical network shown, the energy stored in the capacitor at steady state is

3) $C_{54}H_{90}N_6O_{18}$

2) n = 2; l = 2; m = -2; s = +1/2

4) n = 4; l = 2; m = -1; s = -1/2

2) I_3^- , sp, linear

4) PCl_4^+ , dsp^2 , tetrahedral

2) $\frac{2 \times 0.0821 \times 300}{10}$ atm

4) $\frac{3 \times 0.0821 \times 300}{10} atm$

2) $MgO < P_1O_{10} < SiO_2 < Cl_2O_2$

4) $Cl_2O_7 < SO_3 < P_4O_{10} < SiO_7$

4) $3s^2 3p^2$

2) $HgS(K_{sp} = 32 \times 10^{-54})$

4) $CdS(K_{sp} = 36 \times 10^{-30})$

2 mol of N₂ and 1 mol of He are introduced into a 10L evacuated closed container at 27°C. The

The electron affinity values of four successive elements of third period A, B, C and D are

(1) The electropositive character of alkali metals increases with increase in atomic number

In which of the following reaction H2O2 neither acts as oxidising agent nor reducing agent?

respectively -135, -60, -200 and -348 kJ mol⁻¹. The outer electronic configuration of element B is

3) $3s^2 3p^4$

4) $C_{54}H_{15}N_6O_{18}$

(4) B & C

2) $C_{27}H_{45}N_3O_{18}$

The set of Quantum numbers that is not possible for a d-electron

Which of the following metal sulphide has maximum solubility in water?

Which of the following is the correct order of acidic nature of oxides?

2) $3s^2 3p^3$

(2) Lithium is the hardest metal of IA group(3) Alkali metals are strong Oxidising agents(4) All alkali metals show colour in the flame test

(2) C, D and F (3) A, B and F

1) $C_0H_{15}N_6O_{18}$

1) n = 3; l = 2; m = 0; s = +1/2

1) $FeS(K_{sp} = 11 \times 10^{-20})$

3) $ZnS(K_{sp} = 11 \times 10^{-22})$

3) H_3O^- , sp^3 , angular

1) $\frac{4\times0.0821\times300}{atm}$ atm

3) $\frac{1 \times 0.0821 \times 300}{10}$ atm

Incorrect statement is

1) $3s^2 3p^5$

1) $SO_3 < Cl_2O_7 < Na_2O < MgO$

3) $Na_2O < Al_2O_3 < P_4O_{10} < SO_3$

3) n = 4; l = 2; m = +2; s = +1/2

1) SF_4 , sp^3d , sea-saw geometry

Which of the following compound is/are polar?

Which one of the following is a correct set?

pressure set up in the container will be

 CCl_4 BCl_3 NH_3 SO_2 C_6H_6 H_2O

53.

54.

55.

56.

57.

58.

59.

60.

61.

	1) $Cr_2O_7^{2-} + H^+ + H_2O_2 \rightarrow$	2) $PbS + H$	$_{2}O_{2} \rightarrow$			
	3) $NaOH + H_2O_2 \rightarrow$	4) $KI + H_2C$	$O_2 \rightarrow$			
62.	Incorrect statement in the follow (1) Order of melting points is B>(2) Order of boiling point is B>A (3) Borozole $(B_3N_3H_6)$ is called in	>Al>Tl >In>Ga Al>Ga>In>Tl	e			
63.	 (4) Oxides of boron are amphoteric in nature Ingredients of Portland cement are (1) Dicalcium silicate, tricalcium silicate, tricalcium aluminate (2) Dialuminium silicate, trialuminium silicate, dicalcium silicate (3) Dicalcium silicate, tricalcium aluminate, zinc sulphate (4) Baking soda, limestone, iron oxide 					
64.	Which statement is incorrect in t	the following?				
	(1) CCl_4 does not undergo hydro	_				
65.	 (2) Except Pb, all IVA group elements show catenation property. (3) Graphite acts as a lubricant due to layer lattice structure (4) Pb⁺² is less stable than Pb⁺⁴ Read the following statements A. Gabriel phthalimide synthesis is used to prepare all 1⁰ amines B. C₆H₅Cl Na dryether C₆H₅ - C₆H₅ is known as wurtz reaction 					
	C. In S_N^1 mechanism there is mor				g to partial racemiz	ation
66.	D. All aldehydes give red precip E. Reactivity order of alkyl halic Number of correct statements and (1) 2 (2) 4 LIST -1(Pollutant) L A) $SO_4^{-2} > 550$ ppm 1) B) $NO_3^{-1} > 50$ ppm 2)	itate with Fehling les towards SN ² r nong these (3) 5 IST – 2(Effect) causes disease bl Damage to kidne	g's solut reaction due baby ey, liver,	ion is 1 ⁰ > 2 syndro reprod	$2^{0} > 3^{0}$ (4) 3	
	_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Eutrophication o	/	nd		
	5,	Causes laxative of fluorosis	orov			
	A B C D	A	В	C	D	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2) 4 (4) 4	1	2 2	3	
67.	$A \rightleftharpoons B, K = 10$ (I)		3	_	•	
	$B \rightleftharpoons C, K = 100$ (II)					
	$C \rightleftharpoons D, K = 0.01 (III), the$	en correct order o	$\mathrm{of}\Delta_{_{r}}G^{_{0}}\mathrm{va}$	alues o	f processes at the sa	me temperature
	is		,		•	•
68.	(1) III > I > II (2) III > I Kieldahl's method cannot be use	()	> [[>]] of nitros		(4) II = I = III	

The configuration of the chiral carbon and the geometry of the double bond in the following 69. molecule can be described by

- (2) S and E
- (3) R and Z
- (4) S and Z

- 70.
- In the reaction $C_2H_6 \xrightarrow{(CH_3COO)_2Mn} A \xrightarrow{NaOH} B$, the correct statement about B is
 - (1) On decarboxylation with soda lime it gives Methane
 - (2) On Kolbe's electrolysis it gives Ethane
 - (3) On decarboxylation with soda lime it gives Ethane
 - (4) Both 1 and 2
- 71. The catalyst required for the reaction

$$HC \equiv CH + dil \cdot H_2 SO_4 \xrightarrow{Catalyst} CH_3 CHO$$

- $(1) HgSO_{4}$
- (2) Pd
- (3) Pt
- 72. Benzoic acid gives benzene on being heated with X. Phenol gives benzene on being heated with Y. X and Y are respectively
 - (1) Soda dust and NaOH

- (2) Zinc dust and NaOH
- (3) Zinc dust and Soda lime
- (4) Soda lime and Zinc dust
- Which of the following will be most easily attacked by an electrophile? 73.

- The molar freezing point constant for water is 1.86 K.Kg mole⁻¹. If 342 gm of cane sugar $(C_{12}H_{22}O_{11})$ 74. are dissolved in 1000gm of water, the solution will freeze at
 - 1) $-1.86^{\circ}C$
- 2) 1.86° C
- 3) $-3.92^{\circ}C$
- 4) 2.42° C
- The most commonly used salt like food preservative is 75.
- (2) *KHSO*₃
- $(3) C_6 H_5 COONa$
- (4) *BHT*
- 76. Which among the following graph is correct for zero order reaction

2)

1)

- Initial Concentrition
- 4)
- Initial Concentrition
- 77. The incorrect statement in the following is
 - (1) Maltose is known as malt sugar and contain $\alpha 1$, 4 linkage between glucose units
 - (2) Sucrose is known as cane sugar and contain Linkage between C_1 of αD -glucose and C_2 of β – D - fructose
 - (3) Lactose is also known as milk sugar and contain $\beta 1$, 4 linkage between glucose units
 - (4) αD -Glucose and βD Glucose are anomers

78.	The order of bond angle in hydrides of VA group elements is 1) $NH_3 > PH_3 > SbH_3 > AsH_3$ 2) $NH_3 > AsH_3 > PH_3 > SbH_3$				
	3) $NH_3 > PH_3 > AsH_3 > SbH_3$ 4) $NH_3 > SbH_3 > PH_3 > AsH_3$				
79.	HCOOH reacts with conc. H_2SO_4 to produce				
	(1) CO (2) H_2S (3) SO ₄ (4) CO_2				
80.	An alcohol (A) on dehydration gives (B) which on ozonolysis gives acetone and formaldehyde. (A) and (B) are respectively 1) $CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3$				
	2) $CH_3CH_2CHOHCH_3$ and $CH_3CH = CH - CH_3$				
	3) $(CH_3)_3 COH$ and $(CH_3)_2 C = CH_2$				
	4) $(CH_3)_3 CCH_2 OH$ and $(CH_3)_3 C = CH_2$				
81.	The final product of hydrolysis of XeF ₆ is				
	1) $XeOF_4$ 2) XeO_4 3) XeO_3 4) XeO_2F_2				
82.	Statement – I: F ₂ is better oxidising agent than Cl ₂ Statement – II:HI is strongest acid and strongest reducing agent among hydrides of VIIA (1) Statement – I & II are correct (2) Statement – I & II are incorrect (3) Statement – I is correct but statement – II is incorrect (4) Statement – I is incorrect but statement – II is correct				
83. 84.	The gold number of Gelatin, haemoglobin and sodium acetate are 0.005, 0.05 and 0.7 respectively. The protective actions will be in order: (1) Gelatin< haemoglobin < sodium acetate (2) Haemoglobin > Gelatin< sodium acetate (3) Gelatin> haemoglobin > sodium acetate (4) Sodium acetate > Gelatin> haemoglobin In which pair, both ions are coloured in aqueous medium 1) Sc^{+3} , Zn^{+2} 2) Cu^{+2} , Ti^{+4} 3) Ti^{+3} , Co^{+3} 4) Cu^{+} , Mn^{+2}				
	1) Sc^{+3} , Zn^{+2} 2) Cu^{+2} , Ti^{+4} 3) Ti^{+3} , Co^{+3} 4) Cu^{+} , Mn^{+2}				
85.	Which of the following detergent is used as germicide? (1) Cetyltrimethyl ammonium bromide (2) p-dodecylbenzenesulphonate (3) Sodium lauryl sulphonate (4) Butylated hydroxy toluene				
	SECTION-B				
86.	The limiting molar conductivities (Λ^0) for NaCl, KBr and KCl are 126, 152 and 150 S. cm2mol				
	respectively. Then Λ^0 for NaBr is 1) $128 S cm^2 mol^{-1}$ 2) $302 S cm^2 mol^{-1}$ 3) $278 S cm^2 mol^{-1}$ 4) $176 S cm^2 mol^{-1}$				
87.	Schottky defect causes (1) Increase in the density of solid (3) No change in the density of solid (4) Changes stoichemistry				
88.	Which of the following complex and its structure not correctly matched				
	1) $[NiCl_4]^{2-}$, tetrahedral 2) $[Ni(CO)_4]$, square planar				
	3) $\left[Ni(CN)_{4}\right]^{-2}$, square planar 4) $\left[Cu(NH_{3})_{4}\right]^{+2}$, square planar				
89.	Which of the following is incorrect? (1) In elastomers, polymer chains are held together by weak vanderwaals forces and few cross links are introduced between the chains (2) Cross linked polymers have strong covalent bonds within the linear polymeric chains (3) Fibres have crystalline nature (4) Natural rubber has coiled structure				

99.	At higher concentration of NaOH, the order		
100.	(1) 1 (2) 2 Yellow oily liquid is formed when HNO2 rea	(3) 3 acts with	(4) 4
100.		$(3) \left(CH_3 \right)_2 NH$	$(4) \left(CH_3\right)_3 N$
	PART-3: BOTA	NY: SECTION-	A
101.	The <i>lac</i> operon in <i>E.coli</i> , is controlled by both (CAP). In an <i>in vitro</i> experiment with <i>lac</i> operated A) cAMP levels are high B) Repressor is bound with allolactose C) CAP is interacting with RNA polymerase Which one of the following conclusions is meant 1) Glucose and lactose are present 2) Glucose is present and lactose is absent	eron, the following o	bservations were made
	3) Both are absent4) Glucose is absent and lactose is present		
100			
102.		IV. Enzyme III and IV are correct I and IV are correct	t
103.	A plant of the genotype AaBb is selfed. The	two genes are linked	and are 50 map units apart. What
	proportion of the progeny will have the genot 1) 1/2 2) 1/4	type aabb? 3) 1/8	4) 1/16
104.	Which one of the following set of non-legum 1) <i>Tectona, Sesbania</i> 2) <i>Casuarina(Australian pine), Alnus (Alder)</i> 3) <i>Shorea, Chick pea</i>	inous plants show no	odulation?
105.	4) Azadirachta, Pisum sativum RNA molecules that exhibit catalytic activity 1) mRNA 2) Ribonucleas	are called :	pozymes 4) Ribonucleotides
106.	In which one of the following groups chlorop	ohyll d is present?	,
107.	1) Chlorophyceae 2) Bacillarioph Which one of the following fungus produces		odophyceae 4) Xanthophyceae
108.	1) Albugo 2) Alternaria 3) Ustil How many genetically different gametes can assuming they are independently assorting?		ysiphe idual of genotype AaBbccDDEe,
	1) 3 2) 5 3) 8	4) 32	
109.	· ·	2) Peronospora 4) Dreschlera oryzac	2
110.	M.incognitia affects of tobacco plant	4) Dreschiera oryzac	
111		3) Root	4) Bud
111.	Lichens are the major pollution indicators of 1) SO ₂ in air 2) NO ₂ in air	3) Mercury in water	4) CO in air
112.	Bryophytes have all the following characteris 1) Multicellularity	,	· tissues
113.	The following is the biochemical pathway for		
110.	Colorless precursor 1 — AlleleA — Colorless precursor 6 either gene A or B leads to the formation of with the genotype: AaBb × aabb. Considering the expected progenies are	cursor 2 $\xrightarrow{AlleleB}$ Pure of white flowers. A c	rple pigments. Recessive mutation ross is made between two parents

114.115.116.117.118.119.	3) 1 p Morg of the 1) ger devia 3) Ge 4) Ge Heter 1) Lyo 3) Psi The e 1) Poi A niti 1) Au A me 1) Cro	following is incomes for yellow both ted from 9:3:3 mes for eye color nes for body color ospory is seen in copodium, Pteristiotum, Lycopodium, Pteristiotum, Lycopodium, Pteristiotum, Eyeopodium, Pteristiotum, Eyeopodium, E	orrectly dy cour are and one	dihybrid crosses it statement related blour and white eyed eye colour did it wing size are prend eye colour are of the following son the f	d to this? ye traits are present in not segregate independence on x chromoson tightly linked set of examples? 2) Equisetum, Adian 4) Marsilea, Salvinia g construction of reconstruction of reconstruction of reconstruction of Cycas 3) Scytonema from one linkage grows 3) Translocation	purple: 1 white y genes that were sex linked which n female only ndently of each other and F ₂ ratio me tam a, Selaginella ombinant DNA is 4) DNA gyrase revoluta is 4) Calothrix
		below				
		List – I		List - II		
	a)	Sutton & Boveri	1)	One gene one- enzyme		
		Boven		hypothesis		
	b)	Beadle and	2)	Cell theory		10.0
	c)	Tatum Schleiden &	3)	Chromosome	(0)	-Ollo
	()	Schwan	3)	theory of		Will Follows:
		Search and Control and		inheritance	Co le	20
	d)	Jacob & Monad	4)	Lac operon model of gene	ing cesuli	
				regulation	250	
	1) a-	1, b-3, c-4, d-	- 2	(2) (a-2)	b, b-1, c-3, d-4	
100	3) a –	-2, b -4 , c -1 , d	- 3	4) $a = 3$	a, b-1, c-2, d-4	
120.	In cel	l division, kineto	chor	e helps in onemal complex	ell	
	2) Co	ndensing the chro	omat	in		
	3) Att	taching chromoso		with spindle fibres	S	
121	, .	tokinesis	n			
121.		'cry' is present in cillus subtilis	11	2) Baci	Illus megasporium	
		cillus amylolique	facie		Illus thuringiensis	
122.	Two ₁	pure lines of corn	hav	e mean cob length		espectively. The polygenes
	involved in this trait exhibit additive gene action. Crossing these two lines is expected to produce a progeny population with mean cob length (in inches) of:					
	proge 1) 12.		ın m 2) 7.		3) 6.0	4) 2.75
123.	In a c	ell major proport	ion c	of RNA is found in	n	,
104	,		/		3) Mitochondria	4) Ribosomes
124.		ated chromatid re chytene chromos			regation of daughter (2) Polytene chromos	chromatids leads to the formation of
		mprush chromos			4) Leptotene chromos	
125.	Plasm	nids containing re	plica	ntion origin seque	nces of 2 different ho	
		nplification vector	rs		2) Shuttle vectors	
	3) Ex	pression vectors			4) Integrating vector	rs

126.	Which chemicals given below would you find in phospholipid?	
	1) C, H, O, N, P 2) C, H, O, Fe 3) C, H, O, Mg 4) C, H, O, Mn	
127.	DNA polymerase I is multifunctional enzyme because it promotes	
	I. Polymerisation reaction	
	II. Removal of nucleotides from 3' terminus in DNA	
	III. Removal of nucleotides from 5' terminus in DNA	
	IV. Joining of ends of DNA fragments	
	1) I & IV are correct 2) II & IV are correct 3) III & IV are correct 4) I, II & III are correct	
128.	Which of the following is not a component of mitochondrial electron transport?	
120.	1) Ubiquinone 2) Cytochrome b ₆ 3) Cytochrome c 4) Cytochrome a ₃	
129.	Which of the following is caused due to proteinaceous infectious agent?	
12).	1) Potato spindle tuber disease 2) Anthrax	
	3) Cr-Jacob disease 4) Mosaic disease	
130.	The bonding of two amino acid molecules to form a larger molecule requires	
	1) The release of a water molecule	
	2) The release of a carbon dioxide molecule	
	3) The addition of a nitrogen atom	
	4) The addition of a water molecule	
131.	When hydrogen ions are pumped out of the mitochondrial matrix, across the inner mitochondrial	
	membrane, and into the space between the inner and outer membranes, the result is	
	1) Damage to the mitochondrion	
	 2) The reduction of NAD 3) The restoration of the Na⁺- K⁺ balance across the membrane 	
	4) The creation of a proton gradient	
132.	Match the following	
132.	Match the following	
	I) Bt cotton 1) Improved shelf life	
	II) Flavr Savr tomato 2) Improved nutritional quality	
	III) Roundup ready soyabean 3) Pest resistance	
	IV) Golden yellow rice 4) Herbicide tolerance	
	19	
	1) I – 4, II – 2, III – 1, IV – 3 2) I – 3, II – 1, III – 4, IV – 2 3) I – 4, II – 2, III – 3, IV – 1 4) I – 3, II – 2, III – 1, IV – 4	
	2) $I - 3$, $II - 1$, $III - 4$, $IV - 2$	
	3) $I - 4$, $II - 2$, $III - 3$, $IV - 1$	
100		
133.	The function of water in photosynthesis is to	
	1) Combine with CO ₂	
	2) Absorb light energy3) Supply electrons in the light –dependent reactions	
	4) Transport H ⁺ ions in the light – independent (dark) reactions	
134.	If a segment of DNA is $5'-TACGATTAG-3'$, the RNA that results from the transcription of this	
10	segment will be	
	1) 3'- <i>TACGATTAU</i> -5' 2) 3'- <i>ATGCTAATA</i> -5'	
	3) 3'- <i>UACGAUUAG</i> -5' 4) 3'- <i>AUGCUAAUC</i> -5'	
135.	Electron acceptor during glycolysis	
	1) FAD 2) FMN 3) NADH ₂ 4) NAD	
	SECTION-B	
136.	Zeatin is a naturally occurring	
127	1) Cytokinin 2) Gibberellin 3) Auxin 4) Abscisic acid	
137.	Which of the following RNA serves as adapter molecule during protein synthesis? 1) rRNA 2) mRNA 3) tRNA 4) hnRNA	

138.	List I consists of some terms and List II includes their corresponding definitions. Select the code
	showing correct matching.

	List – I(Terms)		List – II(Definitions)
I)	Photoxidation	1)	Influence of duration of day and night on flowering of plants
II)	Photoperiodism	2)	Splitting of water molecule by light
III)	Photolysis	3)	Damage of cells under high intensity of light
IV)	Photorespiration	4)	Respiration in chloroplasts during day time

```
1) I - 4, II - 3, III - 4, IV - 2
```

2)
$$I - 3$$
, $II - 4$, $III - 3$, $IV - 1$

3)
$$I - 2$$
, $II - 1$, $III - 4$, $IV - 3$

4)
$$I - 3$$
, $II - 1$, $III - 2$, $IV - 4$

List I consists of some terms and List II includes their corresponding definitions. Select the code 139. showing correct matching.

	List – I(Terms)		List – II(Definitions)
I)	Photoxidation	1)	Influence of duration of day and night on flowering of plants
II)	Photoperiodism	2)	Splitting of water molecule by light
III)	Photolysis	3)	Damage of cells under high intensity of light
IV)	Photorespiration	4)	Respiration in chloroplasts during day time
			40,

1)
$$I - 1$$
, $II - 2$, $III - 3$, $IV - 4$

2)
$$I - 2$$
, $II - 1$, $III - 4$, $IV - 3$

3)
$$I - 3$$
, $II - 4$, $III - 2$, $IV - 1$

4)
$$I - 4$$
, $II - 1$, $III - 2$, $IV - 3$

1 4 0	T 1	.1 1 *	1 1		
140.	In lac oneron	the gene whi	ch encodes	s the repressor	nrofein ic
170.	III lac obcion.	the gene will	ch cheducs	5 1110 1 011 05501	DI OLUMINIS

1) 'z'

The following statements have been proposed for plant vegetative development: 141.

- A) Lateral roots develop from epidermal cells
- B) Axillary meristem develops from shoot apical meristem during differentiation of leaf primordia
- C) Root cap is made up of dead cells
- D) Lateral meristems and cylindrical meristems found in roots and shoots results in secondary growth

Which of the above statements are true?

142. During reproductive development in plants

- A) Male and female gamete are produced as a result of two mitotic divisions after meiosis
- B) Generative cell form two male gametes
- C) Antipodals are persistent and provide nourishment to developing embryo
- D) Pollen tube ruptures and releases both the male gametes in one of the degenerating synergid. Which of the above statements are true?

1) A and B

- 2) B and D
- 3) B and C

4) A and D

Which of the following is a process of formation of seeds without fertilization? 133.

1) Apomixis

- 2) Parthenocarpy
- 3) Parthenospory
- 4) Both 1 & 2

Which one of the following enzyme combinations yields protoplasts satisfactorily? 144.

- 1) Ligninase cellulase lipase
- 2) Cellulase lipase hemicellulase
- 3) Cellulase hemicelulase chitinase

	4) Pectinase – cellulase – hemicellulase					
145.	Who for the first time experimentally demonstrated that only DNA of the bacteriophage enters the					
	host cell and not the phage protein?					
	1) Beadle and Tatum 2) Jacob and Monad 3) Luria and Delbruck 4) Hershey and Chase					
146.	During sewage treatment when the BOD is reduced significantly, the effluent is passed to the					
	1) Large aeration tank to form flocs					
	2) Primary settling tank to remove primary sludge					
	3) Secondary settling tank to sediment the flocs					
147.	4) Anaerobic sludge digester Secondary metabolites Abrin and Ricin are					
14/.	1) Alkaloids 2) Drugs 3) Lectins 4) Toxins					
148.	How many statements are correct w.r.t. ecological succession?					
110.	1)Climax community is most stable & shows more niche specialisation.					
	2) Lichen and fungi are examples of climax communities					
	3) Hydarch succession leads to mesic condition.					
	4) Xerarch succession leads to very wet condition.					
	1) Four 2) Three 3) Two 4) One					
	X Y					
149.	The reaction, $\dot{C} \longrightarrow \dot{C} \longrightarrow X - Y + C = C$ is catalysed by a/an					
	1) Transferase 2) Hydrolase 3) Lyase 4) Isomerase					
150.						
	1) Corn borer 2) Cotton bollworm 3) Meloidogyne incognita 4) Bacillus thuringiensis					
	Cally,					
	PART-4: ZOOLOGY: SECTION-A					
151.	Which of the following feature is shared by cnidarians and ctenophores?					
150	1) Cnidocytes 2) Comb plates 3) Radial symmetry 4) Metagenesis					
152.	Which of the following characteristic feature always holds true for the corresponding phylum?					
	1) Platyhelminthes Incomplete gut 2) Annelida Parapodia					
	3) Echinodermata Water vascular system					
	4) Mollusca External shell					
153.	Which of the following feature is not present in the phylum Chordata?					
	1) Post anal tail 2) Pharyngeal gill slits					
	3) Dorsal hollow nerve chord 4) Calcareous ossicles					
154.	Which type of tissue correctly matches with its location?					
	Tissue Location					
	1) Skeletal muscle Blood vessels					
	2) Dense connective tissue Tendons					
	3) Compound epithelium Lining of stomach					
	4) Simple epithelium Dry surface of skin					
155.	Which of the following feature is not present in Periplaneta americana					
	1) Hypognathous head 2) Myogenic heart 3) Muscular gizzard 4) Supra oesophageal ganglia					
156.	Which of the following guards the opening of stomach into the duodenum?					
	1) Sphincter of oddi 2) Cardiac sphincter 3) Sphincter of Boyden 4) Pyloric sphincter					
157.	In the stomach, the factor essential for the absorption of vitamin B_{12} is secreted by the					
1.50	1) Oxyntic cells 2) Chief cells 3) Goblet cells 4) Peptic cells					
158.	The delivary of oxygen to tissue depends on all except					
	1) Haemoglobin amount 2) Cardiac output 3) Ventilation rate 4) Partial pressure of nitrogen					
159.	3) Ventilation rate 4) Partial pressure of nitrogen Volume of air that will remain in the lungs after a normal expiration is represented as					
137.	1) $VC = TV + IRV + ERV$ 2) $FRC = ERV + RV$					
	2) TO THE PROPERTY OF THE PROP					

	A) IG TW + IDV
1.60	3) $IC = TV + IRV$ 4) $TLC = VC + RV$
160.	Difficulty in breathing causing wheezing due to inflammation of bronchi and bronchioles is the
	symptom of 1) Asthma 2) Emphysema 3) Pneumonia 4) Asbestosis
161.	In mammals, which blood vessel would normally carry richest amount of nutrients
101.	1) Hepatic vein 2) Hepatic artery 3) Hepatic portal vein 4) Dorsal aorta
162.	Maximum amount of blood transferred from atria to ventricles in a cardiac cycle is during
102.	1) Atrial systole 2) Joint diastole 3) Ventricular systole 4) Joint systole
163.	The macula densa cells are modified tubular epithelial cells of
	1) DCT 2) PCT 3) Loop of Henle 4) Collecting duct
164.	Several hormones regulate the tubular reabsorption of water and electrolytes at different sites in the
	nephron. Which of the following combination is correct?
	1) ADH in PCT 2) Aldosterone in DCT
	3) ANP in loop of Henle 4) PTH in Bowman's capsule
165.	Which of the following component is absent in visceral muscles?
1.66	1) Myosin 2) Actin 3) Sarcosome 4) Sarcomere
166.	Most diffusible ion when the axonal membrane of a neuron is at rest is
4.5-	1) Na^+ 2) Mg^{++} 3) K^+ 4) Cl^-
167.	The visible coloured portion of the human eye is involved in the regulation of
	1) Lacrimal secretion 2) Diameter of pupil
168.	3) Size of the lens 4) Movement of eye ball Which of the following hormone is an amino acid derivative?
100.	1) Epinephrine 2) Prolactin 3) Progesterone 4) Thyrocalcitonin
169.	Which of the following pair of hormones are antagonistic to each other in their actions?
10).	1) Adrenaline-Noradrenaline 2) Vasopressin-Aldosterone
	3) Insulin-Glucagon 4) Thyrotropin-Thyroxine
170.	Spermatogenesis starts at the age of puberty due to significant increase in secretion of
	1) GHRH 2) hCG 3) GnIH 4) GnRH
171.	Ovulation in a women with 28-day menstrual cycle occurs at
	1) 14 days prior to menstruation 2) Just after corpus luteum formation
170	3) Just before LH surge 4) 14 days prior to beginning of secretory phase
172.	Seminal plasma in human males is rich in
	1) Glucose and Potassium 2) Maltose and Zinc 3) Fructose and Calcium 4) Sucrose and Sodium
173.	Which of the following is a finger-like structure and lies at the upper junction of two labia minora
173.	above urethral opening?
	1) Mons pubis 2) Clitoris 3) Hymen 4) Fourchette
174.	Find the correct pair regarding contraceptive method and its action
	1) Tubectomy Prevent Ovulation
	2) Contraceptive pill Retard entry of sperms
	3) Condoms Prevent menstruation
	4) Coitus interruptus Prevent spermatogenesis
175.	The test tube baby program employs which one of the following techniques?
1/3.	1) AI (IVI) 2) IUI 3) GIFT 4) ZIFT
176.	According to Oparin, which one of the following was not present in the primitive atmosphere
1,0.	1) Ammonia 2) Oxygen 3) Methane 4) Hydrogen
177.	Diversity in the type of beaks of finches adapted to different feeding habits on the Galapagos islands
	provides evidence for
	1) Panspermia 2) Special creation 3) Natural selection 4) Spontaneous generation
178.	Which of the following statement is wrong regarding the eye of octopus and of mammals?
	1) They are result of convergent evolution 2) They indicate different ancestry
170	3) They are analogous structures 4) They are anatomically similar
179.	Which of the following sets of protozoans causes diseases in humans

- 1) Entamoeba histolytica and Plasmodium vivax
- 2) Salmonella typhi and Streptococcus pneumoniae
- 3) Ascaris lumbricoides and Wuchereria malayi
- 4) Trichophyton and Epidermophyton
- The injection of preformed antibodies against snake venom is a type of 180.
 - 1) Active immunity 2) Innate immunity 3) Passive immunity 4) Auto immunity
- What is the name of chemical structure given below and its effect 181.

- 1) Hashish Potent hallucinogen
- 2) Morphine Effective sedative
- 3) Cocaine Potent stimulant
- 4) Benzodiazepine-Effective anxiolytic
- 182. Hisardale is a new variety of sheep developed in Punjab by
 - 1) Mating of individuals of different species
 - 2) Mating of related individuals of same breed
 - 3) Mating of unrelated individuals of same breed
 - 4) Mating of individuals of different breeds
- 183. Find the odd one out in terms of molecular diagnosis
 - 1) Recombinant DNA technology
- 2) Electrocardiography
- 3) Enzyme Linked Immune Sorbent Assay 4) Polymerase Chain Reaction
- Predict from the following chart 184.

- 1) Character is X-linked dominant
- 3) Character is X-linked recessive
- 2) Character is autosomal dominant
- 4) Character is autosomal recessive

- 185. Male is homogametic in
 - 1) Homosapiens
- 2) Neophron
- 3) Periplaneta
- 4) Drosophila

SECTION-B

Match the Column-I with Column-II and choose the correct answer 186.

Column-I

Column-II

- A) Pacific salmon
- i) Produces a small number of large sized offspring
- B) Mammals
- ii) Produces a large number of small sized offspring

C) Oysters

iii) Breed only once in their life time

D) Birds

- iv) Breed many times during their life time
- 1) A-iii, B-iv, C-ii, D-i
- 2) A-i, B-iv, C-ii, D-iii
- 3) A-iv, B-ii, C-i, D-iii
- 4) A-ii, B-iv, C-iii, D-i
- 187. Which of the following is the example of the interaction confers benefits on both the interacting species
 - 1) Sea anemone & Clown fish
- 2) Cuscuta & Hedge plant
- 3) Orchid & Bumblebees
- 4) Balanus & Cathamalus
- Choose the incorrect match from given population growth curve 188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

